

ALEGRA Simulations of Radiatively-Driven Supersonic-Jet Experiments Scaled to Z / ZBL Conditions

T. A. Mehlhorn, R. J. Lawrence, T. A. Haill, K. G. Budge, K. R. Cochrane, and J. J. MacFarlane²

Sandia National Laboratories Albuquerque, New Mexico, USA

¹Ktech Corporation, Albuquerque, New Mexico

²Prism Computational Sciences, Inc., Madison, Wisconsin

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-ACO4-9441 85000

We are using ALEGRA to simulate radiation-driven jet experiments on both NOVA and Z.

Z-pinch and Target Theory Department

- ALEGRA is being validated by comparison with NOVA test results and with other calculations.
- Similar experiments on Z offer flexibility and the potential for physical scale-up by an order of magnitude.
- The Z-Beamlet backlighter can be used to study the generation and dynamic evolution of the jets on scaled-up configurations.

09/15/2000 • rjl asci/alegra: 2

For this configuration the ALEGRA results are consistent with other codes and the experiment.

Z-pinch and Target Theory Department

- At a computational time of 6 ns, ALEGRA predicts the on-axis jet location within about 2% of the estimated experimental result; this result is also consistent with the other computational efforts.
- At a time of 9 ns the predicted axial location of the jet is somewhat over 20% greater than the estimated experimental measurement; but as with the earlier time, it agrees very closely with the average of the other code results.

09/15/2000 • rjl asci/alegra; 7

There are several points that should be noted with regard to the calculations.

- Z-pinch and Target Theory Department

- In these calculations the physical dimensions are scaled by exactly a factor of ten for the two cases.
- Because the radiation transport phenomena (e.g., opacities) do not scale in the same manner as the hydrodynamic behavior, the total response will not be directly homologous.
- The calculations were run with ALEGRA, using 10- μ m resolution for the NOVA case and 100- μ m resolution for the Z configuration.
- Because of the initial slow rise for the radiation drive from Z, the times cannot be shifted in a directly proportional fashion; the comparison plots were chosen for similar stages in the evolution of the response.

09/15/2000 • ril asci/alegra; 1

The Z Backlighter is scheduled to begin operation on Z in early 2001.

Z-pinch and Target Theory Department

- Construction of the ZBL building began in March 1999.
- Construction of the ZBL building was completed in October 1999.
- The front end activation was completed in February 2000.

March 1999

March 2000

09/15/2000 • ril asci/alegra;

Simulations of detector output from the scaled-up Z runs show all major features.

- Z-pinch and Target Theory Department

- These images were generated with hv = 10 keV.
- Features evident in the radiographs include the polystyrene backing block, the shock wave in the polystyrene, and details of the aluminum jet in the plastic.
- Details of the blowoff moving back into the hohlraum are also evident, but would not be recorded in the experimental radiograph.

t = 528 ns

t = 330 ns

เวบ ns

We have studied the generation and evolution of radiation-driven jets on both NOVA and Z.

Z-pinch and Target Theory Department

- The NOVA experiments, in conjunction with the other calculations, have provided validation for the ALEGRA modeling and analyses.
- In comparison with the results from NOVA, physical scaling-up of the configuration and using the Z-pinch machine produces similar, although not identical, phenomenology.
- Using the ZBL backlighter for diagnostic measurements appears to be feasible for the scaled-up configuration.
 - > At late times and for high photon energies, optical depths are of order unity.
- Next steps and other possibilities:
 - > Use finer zoning for ALEGRA calculations;
 - > Use more realistic and representative ZBL spectra;
 - Modify Z source to obtain different conditions (e.g., higher temperatures via dynamic hohlraum, multiple and/or colliding jets);
 - > Examine different configurations of interest, or other degrees of physical scale-up.

09/15/2000 • rjl asci/alegra; 26

